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Abstract
Acquiring knowledge from data and reasoning with the obtained knowledge are both essential processes
of successful logical systems. However, most current logical systems assume different algorithms for
the two processes. The separation causes serious problems such as knowledge acquisition bottleneck,
grounding and commonsense reasoning. This paper gives a simple probabilistic model unifying the two
processes. It formalises how data generate models of formal logic and the models generate the truth
values of logical formulae. The generated models and truth values are shown to be consistent with
maximum likelihood estimation and Fenstad’s theorem, respectively. Probabilistic reasoning on logical
formulae is shown to be a reasonable alternative to a logical consequence relation and a paraconsistent
consequence relation. This paper contributes to data-based reasoning with linear complexity.
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1. Introduction

Thanks to big data and computational power available today, Bayesian statistics plays an
important role in various fields such as neuroscience, cognitive science and artificial intelligence
(AI) [1]. Bayes’ theorem underlies most modern AI systems handling uncertainty such as self-
driving cars, robotics, medical diagnosis and language translation [2]. Bayesian brain hypothesis
[3], free-energy principle [4] and predictive coding [5] argue that the brain unconsciously and
actively predicts and perceives the world using the belief of states of the world. Bayes’ theorem
is used here to explain how sensory inputs such as sight, sound, smell, taste and touch update
the belief.

The generality of Bayesian statistics in intellectual phenomena makes us expect that there is
a Bayesian algorithm and data structure for logical reasoning and that it can tackle fundamental
assumptions of current existing systems. For example, Bayesian networks [6] including naive
Bayes, probabilistic logic programming (PLP) [7] and Markov logic networks (MLN) [8] assume
independence of knowledge or facts. However, the independence rarely holds in real data.
Ordinary formal logic such as propositional logic, first-order logic and modal logic assume
consistency of knowledge to avoid entailing everything from contradictions [9, 10]. However,
contradictions are inevitable when one tries to scale up the knowledge base or describe subjects
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in detail. In addition to the above-mentioned methods, probabilistic logic [11] and conditional
probabilistic logic [12] assume both statistical and logical machineries. The statistical machinery
assigns each logical sentence a probability value or weight so that it reflects aspects of the world,
whereas the logical machinery performs logical reasoning on the probabilistic knowledge so that
conclusions preserve the uncertainty of premises. For example, Bayesian networks, naive Bayes
and PLP assume maximum likelihood estimation or maximum a posteriori estimation for the
statistical machinery. The probabilistic logic, conditional probabilistic logic and MLN assume a
human expert to plays that role. Kolmogorov’s axioms [13] and Fenstad’s theorems [14] argue
constraints that ought to be satisfied by the probability or weight assignment. However, some
serious AI problems such as knowledge acquisition bottleneck, grounding, frame problems and
commonsense reasoning [2, 15, 16] remain open without unifying the two machineries.

To tackle these assumptions of the current existing systems, we give a simple probabilistic
model unifying the two machineries. We call the probabilistic model a generative logic model
(GLM) as it formalises the process by which data generate models of formal logic and the models
generate the truth values of logical formulae. Ordinary formal logic considers an interpretation
on each model (denoted by 𝑚), which represents a state of the world. The interpretation is a
function that maps each formula (denoted by 𝛼) to a truth value, which represents knowledge
of the world. Given data (denoted by 𝑑), the most basic idea introduced in this paper is to
consider the model and interpretation as likelihoods 𝑝(𝑚|𝑑) and 𝑝(𝛼|𝑚), respectively. The
model likelihood represents the model restricted by the data. Using the interpretation likelihood,
Bayes’ theorem gives posterior 𝑝(𝑚|𝛼), which intuitively means an inverse interpretation that
gives the probability that the model making formula 𝛼 true is 𝑚. The likelihood and posterior
cause Bayesian learning 𝑝(𝛼|𝛽) =

∑︀
𝑚 𝑝(𝛼|𝑚)𝑝(𝑚|𝛽), which gives the probability of the

formula 𝛼 being true in the restricted models where the formula 𝛽 is true. This paper looks at
statistical and logical properties of the Bayesian learning.

We show that probabilistic reasoning on GLM satisfies the Kolmogorov’s axioms (see Propo-
sition 1) and a Fenstad’s theorem (see Equation (3)), and is equivalent to maximum likelihood
estimation (see Equation (4)). These facts justify the statistical correctness of GLM. Moreover,
we show that probabilistic reasoning on GLM is equivalent to the classical entailment when the
premise is consistent (see Theorem 1). It is equivalent to the classical entailment with maximal
consistent subsets with respect to set cardinality when the premise is inconsistent (see Theorem
5). These facts justify the logical correctness of GLM. We exemplify commonsense reasoning
and counterfactual reasoning with GLM (see Sections 3.1 and 3.5).

The contributions of this paper are summarised as follows. First, this paper offers an algorithm
for data-based logical reasoning with linear complexity with respect to the number data. To
the best of our knowledge, this is the first paper introducing the idea of generative models to
formalise the process by which data generate models of formal logic and the models generate
the truth values of logical formulae. Second, this paper shows that GLM cancels the fundamental
three assumptions: independence of knowledge, consistency of knowledge and separation of
statistical and logical machineries. In particular, the cancelation of the first assumption is due
to our novel idea that GLM only models the dependency between models and logical sentences.
This is different from the existing methods modelling the dependency between logical sentences.

This paper is organised as follows. Section 2 introduces a generative model for logical
consequence relations. Section 3 shows logical and statistical correctness of the generative



model. Section 4 briefly summarises the results.

2. Generative Logic Model

The first task is to give a probabilistic representation of the process by which data generate
models of formal logic. Let 𝒟 = {𝑑1, 𝑑2, ..., 𝑑𝐾} be a multiset of data about states of the world.
𝐷 is a random variable whose realisations are data in 𝒟. For all data 𝑑𝑘 ∈ 𝒟, we define the
probability of 𝑑𝑘, as follows.

𝑝(𝐷 = 𝑑𝑘) =
1

𝐾

𝐿 represents a propositional or first-order language. For the sake of simplicity, we assume no
function symbol or open formula in 𝐿. ℳ = {𝑚1,𝑚2, ...,𝑚𝑁} is a set of models in formal
logic. 𝒟 is assumed to be complete with respect to ℳ, and thus each data in 𝒟 belongs to a
single model in ℳ. 𝑚 is a function that maps each data to such a single model. 𝐾𝑛 denotes the
number of data that belongs to 𝑚𝑛, i.e., 𝐾𝑛 = |{𝑑𝑘 ∈ 𝒟|𝑚𝑛 = 𝑚(𝑑𝑘)}| where |𝑋| for set 𝑋
denotes the cardinality of 𝑋 . 𝑀 is a random variable whose realisations are models in ℳ. For
all models 𝑚𝑛 ∈ ℳ and data 𝑑𝑘 ∈ 𝒟, we define the conditional probability of 𝑚𝑛 given 𝑑𝑘, as
follows.

𝑝(𝑀 = 𝑚𝑛|𝐷 = 𝑑𝑘) =

{︃
1 if 𝑚𝑛 = 𝑚(𝑑𝑘)

0 otherwise

The second task is to give a probabilistic representation of the process by which models
generate the truth values of logical sentences. Ordinary formal logic considers an interpretation
on each model. The interpretation is a function that maps each formula to a truth value, which
represents knowledge of the world. We here introduce parameter 𝜇 ∈ [0, 1] to represent the
extent to which each model is taken for granted in the interpretation. Concretely, 𝜇 denotes
the probability that a formula is interpreted as being true (resp. false) in a model where it is
true (resp. false). 1− 𝜇 is therefore the probability that a formula is interpreted as being true
(resp. false) in a model where it is false (resp. true). We assume that each formula is a random
variable whose realisations are 0 and 1, denoting false and true, respectively. For all models
𝑚𝑛 ∈ ℳ and formulae 𝛼 ∈ 𝐿, we define the conditional probability of each truth value of 𝛼
given 𝑚𝑛, as follows.

𝑝(𝛼 = 1|𝑀 = 𝑚𝑛) =

{︃
𝜇 if 𝑚𝑛 ∈ J𝛼 = 1K
1− 𝜇 otherwise

𝑝(𝛼 = 0|𝑀 = 𝑚𝑛) =

{︃
𝜇 if 𝑚𝑛 ∈ J𝛼 = 0K
1− 𝜇 otherwise

Here, J𝛼 = 1K denotes the set of all models in which 𝛼 is true, and J𝛼 = 0K the set of all models
in which 𝛼 is false. The above expressions can be simply written as a Bernoulli distribution
with parameter 𝜇 ∈ [0, 1], i.e.,

𝑝(𝛼|𝑀 = 𝑚𝑛) = 𝜇J𝛼K𝑚𝑛 (1− 𝜇)1−J𝛼K𝑚𝑛 .



Table 1
Models and data.

𝑟𝑎𝑖𝑛 𝑤𝑒𝑡 data 𝒟
𝑚1 0 0 ××××
𝑚2 0 1 ××
𝑚3 1 0 ×
𝑚4 1 1 ×××

Table 2
Likelihoods.

𝑝(𝑟𝑎𝑖𝑛|𝑀) 𝑝(𝑤𝑒𝑡|𝑀)
𝑚1 1− 𝜇 1− 𝜇
𝑚2 1− 𝜇 𝜇
𝑚3 𝜇 1− 𝜇
𝑚4 𝜇 𝜇

Here, J𝛼K𝑚𝑛 is a function such that J𝛼K𝑚𝑛 = 1 if 𝑚𝑛 ∈ J𝛼K and J𝛼K𝑚𝑛 = 0 otherwise. Recall
that 𝛼 is a random variable, and thus J𝛼K𝑚𝑛 is either J𝛼 = 0K𝑚𝑛 or J𝛼 = 1K𝑚𝑛 .

In classical logic, given a model, the truth value of each formula is independently deter-
mined. In probability theory, this means that the truth values of any two formulae 𝛼1 and
𝛼2 are conditionally independent given a model 𝑚𝑛, i.e., 𝑝(𝛼1, 𝛼2|𝑀 = 𝑚𝑛) = 𝑝(𝛼1|𝑀 =
𝑚𝑛)𝑝(𝛼2|𝑀 = 𝑚𝑛). Note that the conditional independence holds not only for atomic formulae
but for compound formulae as well.1 Let Δ = {𝛼1, 𝛼2, ..., 𝛼𝐽} be a multiset of 𝐽 formulae. We
thus have

𝑝(Δ|𝑀 = 𝑚𝑛) =

𝐽∏︁
𝑗=1

𝑝(𝛼𝑗 |𝑀 = 𝑚𝑛).

Thus far, we have defined 𝑝(𝐷) and 𝑝(𝑀 |𝐷) as categorical distributions and 𝑝(Δ|𝑀)
as Bernoulli distributions with parameter 𝜇. Given a value of the parameter 𝜇, they pro-
vide the full joint distribution over all of the random variables, i.e. 𝑝(Δ,𝑀,𝐷). We call
{𝑝(Δ|𝑀,𝜇), 𝑝(𝑀 |𝐷), 𝑝(𝐷)} a generative logic model (GLM). In sum, the generative logic
model defines a data-driven interpretation by which the truth values of formulae are logically
interpreted and probabilistically generated from models. The models are also probabilistically
generated from data observed from the real world. The GLM meets the following important
properties.

Proposition 1. The generative logic model satisfies Kolmogorov’s axioms.

Proposition 2. Let 𝛼 ∈ 𝐿. 𝑝(𝛼 = 0) = 𝑝(¬𝛼 = 1) holds.

In the following, we therefore replace 𝛼 = 0 by ¬𝛼 = 1 and then abbreviate ¬𝛼 = 1 to ¬𝛼.
We also abbreviate 𝑀 = 𝑚𝑛 to 𝑚𝑛 and 𝐷 = 𝑑𝑘 to 𝑑𝑘.

Example 1. Let 𝑟𝑎𝑖𝑛 and 𝑤𝑒𝑡 be two propositional symbols meaning ‘it is raining’ and ‘the
grass is wet,’ respectively. Each row of Table 1 shows a different model, i.e., valuation. The last
column shows how many data belongs to each model. Table 2 shows the likelihoods of the atomic
propositions being true given a model. Given {𝑝(Δ|𝑀,𝜇 = 1), 𝑝(𝑀 |𝐷), 𝑝(𝐷)}, we have

𝑝(𝑟𝑎𝑖𝑛|𝑤𝑒𝑡) =

∑︀𝑁
𝑛=1 𝑝(𝑟𝑎𝑖𝑛|𝑚𝑛)𝑝(𝑤𝑒𝑡|𝑚𝑛)

∑︀𝐾
𝑘=1 𝑝(𝑚𝑛|𝑑𝑘)𝑝(𝑑𝑘)∑︀𝑁

𝑛=1 𝑝(𝑤𝑒𝑡|𝑚𝑛)
∑︀𝐾

𝑘=1 𝑝(𝑚𝑛|𝑑𝑘)𝑝(𝑑𝑘)
1In contrast, independence 𝑝(𝛼1, 𝛼2) = 𝑝(𝛼1)𝑝(𝛼2) generally holds for neither atomic formulae nor compound
formulae.



Table 3
Three predicate models and ten associated data.

𝑏𝑙𝑎𝑚𝑒𝑠
(𝑎, 𝑎) (𝑎, 𝑏) (𝑏, 𝑎) (𝑏, 𝑏) data 𝒟

𝑚1 1 0 0 1 ××
𝑚2 1 1 1 0 ×××
𝑚3 0 1 0 1 ×××××
other other no data

=

∑︀𝑁
𝑛=1 𝑝(𝑟𝑎𝑖𝑛|𝑚𝑛)𝑝(𝑤𝑒𝑡|𝑚𝑛)

𝐾𝑛
𝐾∑︀𝑁

𝑛=1 𝑝(𝑤𝑒𝑡|𝑚𝑛)
𝐾𝑛
𝐾

=
(1− 𝜇)2 4

10 + (1− 𝜇)𝜇 2
10 + 𝜇(1− 𝜇) 1

10 + 𝜇2 3
10

(1− 𝜇) 4
10 + 𝜇 2

10 + (1− 𝜇) 1
10 + 𝜇 3

10

=
3

2 + 3
= 0.6.

Example 2. Suppose that 𝐿 has only one 2-ary predicate symbol ‘𝑏𝑙𝑎𝑚𝑒𝑠’ and that the
Herbrand universe for 𝐿 has only two constants {𝑎, 𝑏}. There are four ground atoms,
{𝑏𝑙𝑎𝑚𝑒𝑠(𝑎, 𝑎), 𝑏𝑙𝑎𝑚𝑒𝑠(𝑎, 𝑏), 𝑏𝑙𝑎𝑚𝑒𝑠(𝑏, 𝑎), 𝑏𝑙𝑎𝑚𝑒𝑠(𝑏, 𝑏)}, which result in 24 = 16 possible
models. Each row of Table 3 shows a different model and the last column shows the number
of data that belongs to the model. Models without data are abbreviated from the table. Given
{𝑝(Δ|𝑀,𝜇 = 1), 𝑝(𝑀 |𝐷), 𝑝(𝐷)}, we have

𝑝(∀𝑥 𝑏𝑙𝑎𝑚𝑒𝑠(𝑥, 𝑎)|∃𝑥 𝑏𝑙𝑎𝑚𝑒𝑠(𝑥, 𝑎))

=

∑︀16
𝑛=1J∀𝑥 𝑏𝑙𝑎𝑚𝑒𝑠(𝑥, 𝑎),∃𝑥 𝑏𝑙𝑎𝑚𝑒𝑠(𝑥, 𝑎)K𝑚𝑛

𝐾𝑛
𝐾∑︀16

𝑛=1J∃𝑥 𝑏𝑙𝑎𝑚𝑒𝑠(𝑥, 𝑎)K𝑚𝑛
𝐾𝑛
𝐾

=
𝐾2

𝐾1 +𝐾2
=

3

2 + 3
= 0.6.

3. Correctness

3.1. Statistical Estimation

Fenstad [14] argues that the probability of a formula is the sum of the probabilities of the
models where the formula is true. Let 𝛼 ∈ 𝐿 and 𝑚𝑛 ∈ ℳ. When 𝐿 has no function symbol or
open formula, the first Fenstad theorem can have the following simpler form, where 𝑚𝑛 |= 𝛼
represents 𝑚𝑛 satisfies 𝛼.

𝑝(𝛼) =
𝑁∑︁

𝑛=1:𝑚𝑛|=𝛼

𝑝(𝑚𝑛) (1)

When one has no prior knowledge about the probability of models, the most frequently used
method to estimate 𝑝(𝑀) only from data is maximum likelihood estimation, which is given as
follows.

𝑝(𝑀) = argmax
Φ

𝑝(𝒟|Φ),



where Φ is the parameter of the categorical distribution 𝑝(𝑀). Assuming that each data is
independent given Φ, we have

𝑝(𝒟|Φ) =
𝐾∏︁
𝑘=1

𝑝(𝑑𝑘|Φ) = 𝜑𝐾1
1 𝜑𝐾2

2 · · ·𝜑𝐾𝑁−1

𝑁−1 (1− 𝜑1 − 𝜑2 − · · · − 𝜑𝑁−1)
𝐾𝑁 .

Φ maximises the likelihood if and only if it maximises the log likelihood, which is given as
follows.

𝐿(Φ) = 𝐾1 log 𝜑1 +𝐾2 log 𝜑2 + · · ·+𝐾𝑁−1 log 𝜑𝑁−1

+𝐾𝑁 log(1− 𝜑1 − 𝜑2 − · · · − 𝜑𝑁−1)

The maximum likelihood estimate is obtained by solving the following simultaneous equations,
which are obtained by differentiating the log likelihood with respect to each 𝜑𝑛(1 ≤ 𝑛 ≤ 𝑁−1).

𝜕𝐿(Φ)

𝜕𝜑𝑛
=

𝐾𝑛

𝜑𝑛
− 𝐾𝑁

1− 𝜑1 − 𝜑2 − · · · − 𝜑𝑁−1
= 0

The following is the solution to the simultaneous equations.

Φ =

(︂
𝐾1

𝐾
,
𝐾2

𝐾
, ...,

𝐾𝑁

𝐾

)︂
Therefore, the maximum likelihood estimate for the 𝑛-th model is just the ratio of the number
of data in the model to the total number of data. Combining Equation (1) and the maximum
likelihood estimate, we have

𝑝(𝛼) =
𝑁∑︁

𝑛=1:𝑚𝑛|=𝛼

𝐾𝑛

𝐾
. (2)

Now, let {𝑝(Δ|𝑀,𝜇 = 1), 𝑝(𝑀 |𝐷), 𝑝(𝐷)} be a GLM such that 𝜇 = 1. We show that both
the Fenstad theorem and maximum likelihood estimation justify the GLM. The Fenstad theorem
justifies the GLM because probabilistic inference on the GLM satisfies Equation (1).

𝑝(𝛼) =

𝑁∑︁
𝑛=1

𝑝(𝛼,𝑚𝑛) =

𝑁∑︁
𝑛=1

𝑝(𝛼|𝑚𝑛)𝑝(𝑚𝑛) =

𝑁∑︁
𝑛=1

J𝛼K𝑚𝑛𝑝(𝑚𝑛) =

𝑁∑︁
𝑛=1:𝑚𝑛∈J𝛼K

𝑝(𝑚𝑛) (3)

Maximum likelihood estimation also justifies the GLM because probabilistic inference on the
GLM satisfies Equation (2).

𝑝(𝛼) =

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

𝑝(𝛼,𝑚𝑛, 𝑑𝑘) =

𝑁∑︁
𝑛=1

𝑝(𝛼|𝑚𝑛)

𝐾∑︁
𝑘=1

𝑝(𝑚𝑛|𝑑𝑘)𝑝(𝑑𝑘)

=
𝑁∑︁

𝑛=1

J𝛼K𝑚𝑛

𝐾𝑛

𝐾
=

𝑁∑︁
𝑛=1:𝑚𝑛∈J𝛼K

𝐾𝑛

𝐾
(4)

We have shown that GLM not only follows the Fenstad’s theorem and maximum likelihood
estimation but also treats their results as probabilistic reasoning in a unified way. This result
justifies the correctness of GLM from a statistical point of view.



Table 4
New data.

𝑏𝑖𝑟𝑑 𝑓𝑙𝑦 data new data
𝑚1 0 0 ×××××
𝑚2 0 1 ××
𝑚3 1 0 ×
𝑚4 1 1 ×××

3.2. Reasoning from Data

There are some practical advantages of the GLMs. The computational complexity of Equation
(4) depends on 𝑁 , which is unbounded in predicate logic and exponentially increases in propo-
sitional logic with respect to the number of propositional symbols. However, Equation (4) can
be transformed as follows for a linear complexity with respect to the number of data, i.e., 𝐾 .

𝑝(𝛼) =
𝑁∑︁

𝑛=1

J𝛼K𝑚𝑛

𝐾𝑛

𝐾
=

𝐾∑︁
𝑘=1

J𝛼K𝑚(𝑑𝑘)
1

𝐾
(5)

In addition, Equation (4) has only a constant complexity for recalculation for new data. Let
𝑝𝐾 denote the probability calculated with 𝐾 data. 𝑝𝐾+1(𝛼) can be calculated using 𝑝𝐾(𝛼) as
follows.

𝑝𝐾+1(𝛼) =

𝑁∑︁
𝑛=1

𝑝(𝛼|𝑚𝑛)

𝐾+1∑︁
𝑘=1

𝑝(𝑚𝑛|𝑑𝑘)𝑝(𝑑𝑘)

=
𝑁∑︁

𝑛=1

𝑝(𝛼|𝑚𝑛)
𝐾∑︁
𝑘=1

𝑝(𝑚𝑛|𝑑𝑘)𝑝(𝑑𝑘) +
𝑁∑︁

𝑛=1

𝑝(𝛼|𝑚𝑛)𝑝(𝑚𝑛|𝑑𝐾+1)𝑝(𝑑𝐾+1)

=
𝐾

𝐾 + 1

𝑁∑︁
𝑛=1

𝑝(𝛼|𝑚𝑛)
𝐾∑︁
𝑘=1

𝑝(𝑚𝑛|𝑑𝑘)
1

𝐾
+

𝑁∑︁
𝑛=1

𝑝(𝛼|𝑚𝑛)𝑝(𝑚𝑛|𝑑𝐾+1)
1

𝐾 + 1

=
𝐾𝑝𝐾(𝛼) + J𝛼K𝑚(𝑑𝐾+1)

𝐾 + 1
(6)

Finally, as demonstrated in the following example, Equation (6) is good at modelling the
development of commonsense knowledge.

Example 3. Let ‘𝑏𝑖𝑟𝑑’ and ‘𝑓𝑙𝑦’ be two propositional symbols meaning ‘It is a bird.’ and ‘It flies.’,
respectively. Each row of Table 4 shows a different model. Given the ten data shown in the fourth
column, the probability that 𝑏𝑖𝑟𝑑 implies 𝑓𝑙𝑦 is calculated using Equation (5), as follows.

𝑝(𝑏𝑖𝑟𝑑 → 𝑓𝑙𝑦) =

10∑︁
𝑘=1

J𝑏𝑖𝑟𝑑 → 𝑓𝑙𝑦K𝑚(𝑑𝑘)
1

10
= 1

It is obvious from the GLM that the counterintuitive knowledge that birds must fly comes from a
lack of data. Indeed, taking into account the eleventh data shown in the last column, the probability



is updated using Equation (6), as follows.

𝑝11(𝛼) =
10𝑝10(𝑏𝑖𝑟𝑑 → 𝑓𝑙𝑦) + J𝑏𝑖𝑟𝑑 → 𝑓𝑙𝑦K𝑚(𝑑11)

11
=

10

11

3.3. Logical Entailment

We showed in the last section that, given {𝑝(Δ|𝑀,𝜇 = 1), 𝑝(𝑀 |𝐷), 𝑝(𝐷)}, 𝑝(𝑀) is equivalent
to the maximum likelihood estimate, i.e., for all 𝑚𝑛 ∈ ℳ,

𝑝(𝑚𝑛) =

𝐾∑︁
𝑘=1

𝑝(𝑚𝑛|𝑑𝑘)𝑝(𝑑𝑘) =
𝐾𝑛

𝐾
.

Therefore, {𝑝(Δ|𝑀,𝜇 = 1), 𝑝(𝑀 |𝐷), 𝑝(𝐷)} is equivalent to {𝑝(Δ|𝑀,𝜇 = 1), 𝑝(𝑀)} when
𝑝(𝑀) is the maximum likelihood estimate. For the sake of simplicity, we also call the latter
a GLM and use it without distinction. To discuss logical properties of the GLM, we assume
0 /∈ 𝑝(𝑀) meaning that every model is possible, i.e., 𝑝(𝑚) ̸= 0, for all models. Recall that
a set Δ of formulae entails a formula 𝛼 in classical logic, denoted by Δ |= 𝛼, iff 𝛼 is true in
every model in which Δ is true, i.e., JΔK ⊆ J𝛼K. The following two theorems state that certain
inference on the GLM is more cautious than classical entailment.

Theorem 1. Let 𝛼 ∈ 𝐿 and Δ ⊆ 𝐿 such that JΔK ̸= ∅. 𝑝(𝛼|Δ) = 1 if and only if Δ |= 𝛼.

Proof. Recall that, in formal logic, the fact that there is a model of Δ (or Δ has a model) is
equivalent to the fact that there is a model 𝑚 in which every formula in Δ is true in 𝑚. Dividing
models into the models of Δ and the others, we have

𝑝(𝛼|Δ) =

∑︀
𝑚 𝑝(𝛼|𝑚)𝑝(Δ|𝑚)𝑝(𝑚)∑︀

𝑚 𝑝(Δ|𝑚)𝑝(𝑚)

=

∑︁
𝑚∈JΔK

𝑝(𝑚)𝑝(𝛼|𝑚)𝜇|Δ| +
∑︁

𝑚/∈JΔK

𝑝(𝑚)𝑝(𝛼|𝑚)𝑝(Δ|𝑚)

∑︁
𝑚∈JΔK

𝑝(𝑚)𝜇|Δ| +
∑︁

𝑚/∈JΔK

𝑝(𝑚)𝑝(Δ|𝑚)
.

𝑝(Δ|𝑚) =
∏︀

𝛽∈Δ 𝑝(𝛽|𝑚) =
∏︀

𝛽∈Δ 𝜇J𝛽K𝑚(1− 𝜇)1−J𝛽K𝑚 . For all 𝑚 /∈ JΔK, there is 𝛽 ∈ Δ such
that J𝛽K𝑚 = 0. Therefore, 𝑝(Δ|𝑚) = 0 when 𝜇 = 1, for all 𝑚 /∈ JΔK. We thus have

𝑝(𝛼|Δ) =

∑︀
𝑚∈JΔK 𝑝(𝑚)𝑝(𝛼|𝑚)1|Δ|∑︀

𝑚∈JΔK 𝑝(𝑚)1|Δ| =

∑︀
𝑚∈JΔK 𝑝(𝑚)1J𝛼K𝑚01−J𝛼K𝑚∑︀

𝑚∈JΔK 𝑝(𝑚)
.

Since 1J𝛼K𝑚01−J𝛼K𝑚 = 1100 = 1 if 𝑚 ∈ J𝛼K and 1J𝛼K𝑚01−J𝛼K𝑚 = 1001 = 0 if 𝑚 /∈ J𝛼K, we
have

𝑝(𝛼|Δ) =

∑︀
𝑚∈JΔK∩J𝛼K 𝑝(𝑚)∑︀

𝑚∈JΔK 𝑝(𝑚)
.

Now,
∑︀

𝑚∈JΔK∩J𝛼K 𝑝(𝑚)∑︀
𝑚∈JΔK 𝑝(𝑚) = 1 iff J𝛼K ⊇ JΔK, i.e., Δ |= 𝛼.



Example 4. Theorem 1 does not hold without assumption 0 /∈ 𝑝(𝑀). Given 𝑝(𝑀) =
(0.6, 0, 0.1, 0.3) in Example 1, 𝑝(𝑟𝑎𝑖𝑛|𝑤𝑒𝑡) = 1 but {𝑤𝑒𝑡} ̸|= 𝑟𝑎𝑖𝑛.

Theorem 2. Let 𝛼 ∈ 𝐿 and Δ ⊆ 𝐿 such that JΔK = ∅. If 𝑝(𝛼|Δ) = 1 then Δ |= 𝛼, but not vice
versa.

Proof. (⇒) If JΔK = ∅ then Δ |= 𝛼, for all 𝛼, in classical logic. (⇐) We show a counterexample
where Δ |= 𝛼 but 𝑝(𝛼|Δ) is undefined. 𝛽,¬𝛽 |= 𝛼 holds because J𝛽,¬𝛽K = ∅ results in
J𝛽,¬𝛽K ⊆ J𝛼K. Meanwhile, 𝑝(𝛼|𝛽,¬𝛽) is given as follows.

𝑝(𝛼|𝛽,¬𝛽) =
∑︀

𝑤 𝑝(𝑤)𝑝(𝛼|𝑤)𝑝(𝛽|𝑤)𝑝(¬𝛽|𝑤)∑︀
𝑤 𝑝(𝑤)𝑝(𝛽|𝑤)𝑝(¬𝛽|𝑤)

=
𝜇(1− 𝜇)

∑︀
𝑤 𝑝(𝑤)𝑝(𝛼|𝑤)

𝜇(1− 𝜇)
∑︀

𝑤 𝑝(𝑤)

This is undefined due to division by zero when 𝜇 = 1.

Everything is entailed from a contradiction in the classical entailment. Certain inference on
the GLM is more cautious than the classical entailment because the proof of Theorem 2 states
that nothing is entailed from a contradiction. In the next section, we look at a GLM that entails
something reasonable from contradictions.

3.4. Paraconsistency

Let {lim𝜇→1 𝑝(Δ|𝑀,𝜇), 𝑝(𝑀)} be a GLM such that 𝜇 → 1 and 0 /∈ 𝑝(𝑀) where 𝜇 → 1
represents 𝜇 approaches 1. The following two theorems state that certain inference on the GLM
is more cautious than classical entailment.

Theorem 3. Let 𝛼 ∈ 𝐿 and Δ ⊆ 𝐿 such that JΔK ̸= ∅. 𝑝(𝛼|Δ) = 1 if and only if Δ |= 𝛼.

Proof. lim𝜇→1 does not change the proof of Theorem 1.

Theorem 4. Let 𝛼 ∈ 𝐿 and Δ ⊆ 𝐿 such that JΔK = ∅. If 𝑝(𝛼|Δ) = 1 then Δ |= 𝛼, but not vice
versa.

Proof. (⇒) Same as for Theorem 2. (⇐) We show a counterexample where Δ |= 𝛼 but 𝑝(𝛼|Δ) ̸=
1. Suppose 𝑝(𝛼) < 1. We can show 𝑝(𝛼|𝛽 ∧ ¬𝛽) < 1 as follows.

𝑝(𝛼|𝛽 ∧ ¬𝛽) =

∑︀
𝑚 𝑝(𝑚) lim𝜇→1 𝑝(𝛼|𝑚) lim𝜇→1 𝑝(𝛽 ∧ ¬𝛽|𝑚)∑︀

𝑚 𝑝(𝑚) lim𝜇→1 𝑝(𝛽 ∧ ¬𝛽|𝑚)

= lim
𝜇→1

(1− 𝜇)
∑︀

𝑚 𝑝(𝑚)𝑝(𝛼|𝑚)

(1− 𝜇)
∑︀

𝑚 𝑝(𝑚)
= lim

𝜇→1

∑︀
𝑚 𝑝(𝑚)𝑝(𝛼|𝑚)∑︀

𝑚 𝑝(𝑚)

=
∑︁
𝑚

𝑝(𝑚) lim
𝜇→1

𝑝(𝛼|𝑚) = 𝑝(𝛼)

Therefore, 𝑝(𝛼|𝛽 ∧ ¬𝛽) ̸= 1. Note that 𝛽 ∧ ¬𝛽 |= 𝛼 because J𝛽 ∧ ¬𝛽K = ∅ results in
J𝛽 ∧ ¬𝛽K ⊆ J𝛼K.

To characterise the certain inference on the GLM, we define an approximate model using
maximal consistent subsets with respect to set cardinality. Recall that a set of formulae is
consistent if there is a model of the set.



Definition 1 (Approximate model). Let 𝑚 be a model and Δ ⊆ 𝐿 be an inconsistent set of
formulae. 𝑚 is an approximate model of Δ if 𝑚 is a model of a maximal (w.r.t. set cardinality)
consistent subset of Δ.

Theorem 5. Let Δ ⊆ 𝐿 and 𝛼 ∈ 𝐿. 𝑝(𝛼|Δ) = 1 if and only if Δ′ |= 𝛼, for all maximal (w.r.t.
set cardinality) consistent subsets Δ′ of Δ.

Proof. We use notation ((Δ)) to denote the set of all approximate models of Δ. We also use
notation |Δ|𝑚 to denote the number of formulas inΔ that are true in𝑚, i.e. |Δ|𝑚 =

∑︀
𝛽∈ΔJ𝛽K𝑚.

Dividing models into ((Δ)) and the others, we have

𝑝(𝛼|Δ) = lim
𝜇→1

∑︀
𝑚 𝑝(𝛼|𝑚)𝑝(𝑚)𝑝(Δ|𝑚)∑︀

𝑚 𝑝(𝑚)𝑝(Δ|𝑚)

= lim
𝜇→1

∑︁
�̂�∈((Δ))

𝑝(𝛼|�̂�)𝑝(�̂�)𝑝(Δ|�̂�) +
∑︁

𝑚/∈((Δ))

𝑝(𝛼|𝑚)𝑝(𝑚)𝑝(Δ|𝑚)

∑︁
�̂�∈((Δ))

𝑝(�̂�)𝑝(Δ|�̂�) +
∑︁

𝑚/∈((Δ))

𝑝(𝑚)𝑝(Δ|𝑚)
.

Now, 𝑝(Δ|𝑚) can be developed as follows, for all 𝑚 (regardless of the membership of ((Δ))).

𝑝(Δ|𝑚) =
∏︁
𝛽∈Δ

𝑝(𝛽|𝑚) =
∏︁
𝛽∈Δ

𝜇J𝛽K𝑚(1− 𝜇)1−J𝛽K𝑚

= 𝜇
∑︀

𝛽∈ΔJ𝛽K𝑚(1− 𝜇)
∑︀

𝛽∈Δ(1−J𝛽K𝑚) = 𝜇|Δ|𝑚(1− 𝜇)|Δ|−|Δ|𝑚

Therefore, 𝑝(𝛼|Δ) = lim𝜇→1
𝑊+𝑋
𝑌+𝑍 where

𝑊 =
∑︁

�̂�∈((Δ))

𝑝(𝛼|�̂�)𝑝(�̂�)𝜇|Δ|�̂�(1− 𝜇)|Δ|−|Δ|�̂�

𝑋 =
∑︁

𝑚/∈((Δ))

𝑝(𝛼|𝑚)𝑝(𝑚)𝜇|Δ|𝑚(1− 𝜇)|Δ|−|Δ|𝑚

𝑌 =
∑︁

�̂�∈((Δ))

𝑝(�̂�)𝜇|Δ|�̂�(1− 𝜇)|Δ|−|Δ|�̂�

𝑍 =
∑︁

𝑚/∈((Δ))

𝑝(𝑚)𝜇|Δ|𝑚(1− 𝜇)|Δ|−|Δ|𝑚 .

From Definition 1, |Δ|�̂� has the same value, for all �̂� ∈ ((Δ)). Therefore, the fraction can
be simplified by dividing the denominator and numerator by (1− 𝜇)|Δ|−|Δ|�̂� . We thus have
𝑝(𝛼|Δ) = lim𝜇→1

𝑊 ′+𝑋′

𝑌 ′+𝑍′ where

𝑊 ′ =
∑︁

�̂�∈((Δ))

𝑝(𝛼|�̂�)𝑝(�̂�)𝜇|Δ|�̂�

𝑋 ′ =
∑︁

𝑚/∈((Δ))

𝑝(𝛼|𝑚)𝑝(𝑚)𝜇|Δ|𝑚(1− 𝜇)|Δ|�̂�−|Δ|𝑚



𝑌 ′ =
∑︁

�̂�∈((Δ))

𝑝(�̂�)𝜇|Δ|�̂�

𝑍 ′ =
∑︁

𝑚/∈((Δ))

𝑝(𝑚)𝜇|Δ|𝑚(1− 𝜇)|Δ|�̂�−|Δ|𝑚 .

Applying the limit operation, we can cancel out 𝑋 ′ and 𝑍 ′ and have

𝑝(𝛼|Δ) =

∑︁
�̂�∈((Δ))

𝑝(𝛼|�̂�)𝑝(�̂�)

∑︁
�̂�∈((Δ))

𝑝(�̂�)
=

∑︁
�̂�∈((Δ))

1J𝛼K�̂�01−J𝛼K�̂�𝑝(�̂�)

∑︁
�̂�∈((Δ))

𝑝(�̂�)
.

Since 1J𝛼K�̂�01−J𝛼K�̂� = 1100 = 1 if �̂� ∈ J𝛼K and 1J𝛼K�̂�01−J𝛼K�̂� = 1001 = 0 if �̂� /∈ J𝛼K, we
have

𝑝(𝛼|Δ) =

∑︀
�̂�∈((Δ))∩J𝛼K 𝑝(�̂�)∑︀

�̂�∈((Δ)) 𝑝(�̂�)
.

Therefore, 𝑝(𝛼|Δ) = 1 holds iff J𝛼K ⊇ ((Δ)). By definition, 𝑚 ∈ ((Δ)) iff 𝑚 is a model of a
maximal consistent subset of Δ w.r.t. set cardinality. Therefore, 𝑚 ∈ ((Δ)) iff 𝑚 ∈

⋃︀
Δ′JΔ′K

where Δ′ is a maximal consistent subset of Δ w.r.t. set cardinality. Therefore, 𝑝(𝛼|Δ) = 1 iff
J𝛼K ⊇

⋃︀
Δ′JΔ′K. In other words, for all maximal (w.r.t. set cardinality) consistent subsets Δ′ of

Δ, J𝛼K ⊇ JΔ′K, i.e., Δ′ |= 𝛼.

Example 5. Let 𝜇 → 1 and 𝑝(𝑀) = (0.25, 0.25, 0.25, 0.25) in Example 1. Given Δ =
{𝑟𝑎𝑖𝑛,𝑤𝑒𝑡, 𝑟𝑎𝑖𝑛 → 𝑤𝑒𝑡,¬𝑤𝑒𝑡}, there are three maximal (w.r.t. set inclusion) consistent subsets,
i.e., 𝑆1 = {𝑟𝑎𝑖𝑛,𝑤𝑒𝑡, 𝑟𝑎𝑖𝑛 → 𝑤𝑒𝑡}, 𝑆2 = {𝑟𝑎𝑖𝑛,¬𝑤𝑒𝑡} and 𝑆3 = {𝑟𝑎𝑖𝑛 → 𝑤𝑒𝑡,¬𝑤𝑒𝑡}, and
one maximal (w.r.t. set cardinality) consistent subset, i.e., 𝑆1. 𝑝(𝑟𝑎𝑖𝑛|Δ) = 1 and 𝑆1 |= 𝑟𝑎𝑖𝑛 hold,
but 𝑆3 ̸|= 𝑟𝑎𝑖𝑛.

3.5. Counterfactuals

Would England have won the match against Argentina at the 1986 World Cup if Diego Maradona
had not used his hand to score the first goal? Reasoning with this kind of false and imaginary
conditional statement is often called counterfactual reasoning. Let {lim𝜇→1 𝑝(Δ|𝑀,𝜇), 𝑝(𝑀)}
be a GLM such that 𝜇 → 1. This section demonstrates that the certain inference on the GLM is
a natural model of counterfactual reasoning.

Table 5 shows data on four football matches characterised by four attributes: 𝑔𝑜𝑎𝑙, ℎ𝑜𝑚𝑒,
𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡, 𝑤𝑖𝑛 ∈ {0, 1}. They are, respectively, facts about whether our teammate Alice scored
a goal or not, whether the game was played at home or not, whether the opponent was 0
(meaning Belgium) or 1 (meaning Brazil), and whether our team won or not. Now, we consider
the following question: Our team lost the home game without Alice’s goal against Belgium, i.e.,
𝑚1. Would we have won if Alice had scored a goal in this match? This question does not have a
straightforward answer because it is a counterfactual with respect to the data. Indeed, the set



Table 5
Prior distribution over four football matches.

𝑝(𝑀) 𝑔𝑜𝑎𝑙 ℎ𝑜𝑚𝑒 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 𝑤𝑖𝑛
𝑚1 0.25 0 1 0 0
𝑚2 0.25 1 1 1 1
𝑚3 0.25 1 0 0 1
𝑚4 0.25 1 0 1 0

of attributes, i.e., (𝑔𝑜𝑎𝑙 = 1, ℎ𝑜𝑚𝑒 = 1, 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 = 0), of the counterfactual does not appear
in the data.

As long as the counterfactual does not exist in the data, it is reasonable to realise counterfactual
reasoning based on the facts most similar to the counterfactual [17]. The counterfactual shares
attributes (ℎ𝑜𝑚𝑒 = 1, 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 = 0) with 𝑚1, (𝑔𝑜𝑎𝑙 = 1, ℎ𝑜𝑚𝑒 = 1) with 𝑚2, (𝑔𝑜𝑎𝑙 =
1, 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 = 0) with 𝑚3 and (𝑔𝑜𝑎𝑙 = 1) with 𝑚4. The data thus indicates that 𝑚1,𝑚2 and
𝑚3 are most similar to the counterfactual in terms of the number of shared attributes. Since
the team won in 𝑚2 and 𝑚3, it is reasonable to conclude that, given the counterfactual, the
probability of winning is 2/3. Here, readers might think that 𝑚1 should be excluded from the
most similar facts because, in the counterfactual, we look at the situation in which Alice scored
a goal. However, 𝑚1 contains important information because it is empirically true that the
probability of winning with Alice’s goal is positively affected by the fact that we won without
Alice’s goal and negatively affected by the fact that we lost without Alice’s goal.

Interestingly, the idea of counterfactual reasoning is naturally modelled by the GLM. The
predictive probability of winning given the counterfactual is calculated as follows.

𝑝(𝑤𝑖𝑛|𝑔𝑜𝑎𝑙, ℎ𝑜𝑚𝑒,¬𝑜𝑝𝑝.) = lim
𝜇→1

∑︀
𝑚 𝑝(𝑔𝑜𝑎𝑙|𝑚)𝑝(ℎ𝑜𝑚𝑒|𝑚)𝑝(¬𝑜𝑝𝑝.|𝑚)𝑝(𝑤𝑖𝑛|𝑚)𝑝(𝑚)∑︀

𝑚 𝑝(𝑔𝑜𝑎𝑙|𝑚)𝑝(ℎ𝑜𝑚𝑒|𝑚)𝑝(¬𝑜𝑝𝑝.|𝑚)𝑝(𝑚)

= lim
𝜇→1

𝜇2(1− 𝜇)2 + 𝜇3(1− 𝜇) + 𝜇3(1− 𝜇) + 𝜇(1− 𝜇)3

𝜇2(1− 𝜇) + 𝜇2(1− 𝜇) + 𝜇2(1− 𝜇) + 𝜇(1− 𝜇)2
=

2

3

The denominator of the predictive probability turns out to equal the number of facts most
similar to the counterfactual, i.e., 𝑚1, 𝑚2 and 𝑚3, whereas the numerator turns out to equal
the number of wins from the three games, i.e., 𝑚2 and 𝑚3. Note that only the GLM with 𝜇 → 1
successfully formalises the idea of counterfactual reasoning.

Our approach for counterfactual reasoning essentially differs from Pearl [17] and Lewis
[18]. Our approach is data-driven, whereas Pearl’s approach is model-driven in the sense that
it assumes a causal diagram. Our approach is based on probability theory, whereas Lewis’s
approach is based on the possible-worlds semantics. Although a formal comparison is difficult,
Table 6 shows that there are some counterparts between the two approaches.

4. Conclusions

We introduced the idea of generative models to the interpretation of formal logic. The idea
referred to as generative logic models accounts for the process by which data about states of



Table 6
Correspondence with Lewis’ counterfactuals.

Lewis’ counterfactuals Our counterfactuals
Possible worlds Probability distribution 𝑝(𝑀)
Our world(s) Model(s) JΔK

Most similar world(s) Approximate model(s) ((Δ))
CounterfactualΔ > 𝛼 Predictive distribution 𝑝(𝛼|Δ)

the world generate models of formal logic and the models generate the truth values of logical
formulae. We showed that it is a theory of reasoning that deals with several types of reasoning
such as statistical reasoning, logical reasoning, paraconsistent reasoning and counterfactual
reasoning.
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A. Proofs

Proposition 1. Let 𝛼, 𝛽 ∈ 𝐿. We need to show the following three properties.

1. 0 ≤ 𝑝(𝛼 = 𝑖) holds, for all 𝑖 ∈ {0, 1}.
2.

∑︀
𝑖∈{0,1} 𝑝(𝛼 = 𝑖) = 1 holds.

3. 𝑝(𝛼 ∨ 𝛽 = 𝑖) = 𝑝(𝛼 = 𝑖) + 𝑝(𝛽 = 𝑖)− 𝑝(𝛼 ∧ 𝛽 = 𝑖) holds, for all 𝑖 ∈ {0, 1}.

(1) 𝑝(𝛼 = 𝑖) =
∑︀

𝑚 𝑝(𝛼 = 𝑖|𝑚)𝑝(𝑚). Both 𝑝(𝛼 = 𝑖|𝑚) and 𝑝(𝑚) cannot be negative.
(2) Since J𝛼 = 0K𝑚 = 1− J𝛼 = 1K𝑚, we have

𝑝(𝛼 = 0|𝑚) + 𝑝(𝛼 = 1|𝑚) = 𝜇J𝛼=0K𝑚(1− 𝜇)1−J𝛼=0K𝑚 + 𝜇J𝛼=1K𝑚(1− 𝜇)1−J𝛼=1K𝑚

= 𝜇1−J𝛼=1K𝑚(1− 𝜇)J𝛼=1K𝑚 + 𝜇J𝛼=1K𝑚(1− 𝜇)1−J𝛼=1K𝑚 .

If J𝛼 = 1K𝑚 = 1 then 𝑝(𝛼 = 0|𝑚) + 𝑝(𝛼 = 1|𝑚) = (1− 𝜇) + 𝜇 = 1. If J𝛼 = 1K𝑚 = 0 then
𝑝(𝛼 = 0|𝑚) + 𝑝(𝛼 = 1|𝑚) = 𝜇+ (1− 𝜇) = 1. Therefore, we have

𝑝(𝛼 = 0) + 𝑝(𝛼 = 1) =
∑︁
𝑚

𝑝(𝛼 = 0|𝑚)𝑝(𝑚) +
∑︁
𝑚

𝑝(𝛼 = 1|𝑚)𝑝(𝑚)

=
∑︁
𝑚

𝑝(𝑚){𝑝(𝛼 = 0|𝑚) + 𝑝(𝛼 = 1|𝑚)} =
∑︁
𝑚

𝑝(𝑚) = 1.

(3) From (2), it is sufficient to show only case 𝑖 = 1 because case 𝑖 = 0 can be developed as
follows.

1− 𝑝(𝛼 ∨ 𝛽 = 1) = 1− {𝑝(𝛼 = 1) + 𝑝(𝛽 = 1)− 𝑝(𝛼 ∧ 𝛽 = 1)}

It is sufficient to show 𝑝(𝛼 ∨ 𝛽 = 1|𝑚) = 𝑝(𝛼 = 1|𝑚) + 𝑝(𝛽 = 1|𝑚)− 𝑝(𝛼 ∧ 𝛽 = 1|𝑚), for
all 𝑚, since the following holds.∑︁

𝑚

𝑝(𝛼 ∨ 𝛽 = 1|𝑚)𝑝(𝑚) =
∑︁
𝑚

{𝑝(𝛼 = 1|𝑚) + 𝑝(𝛽 = 1|𝑚)− 𝑝(𝛼 ∧ 𝛽 = 1|𝑚)}𝑝(𝑚)

By case analysis, the right expressions can have either of the following four cases.

(1− 𝜇) + (1− 𝜇)− (1− 𝜇) = 1− 𝜇 (7)

(1− 𝜇) + 𝜇− (1− 𝜇) = 𝜇 (8)

𝜇+ (1− 𝜇)− (1− 𝜇) = 𝜇 (9)

𝜇+ 𝜇− 𝜇 = 𝜇 (10)

where (7), (8), (9) and (10) are obtained in the cases (J𝛼 = 1K𝑚 = J𝛽 = 1K𝑚 = 0), (J𝛼 = 1K𝑚 = 0
and J𝛽 = 1K𝑚 = 1), (J𝛼 = 1K𝑚 = 1 and 𝑚 ∈ J𝛽 = 1K𝑚 = 0), and (J𝛼 = 1K𝑚 = J𝛽 = 1K𝑚 =
1), respectively. All of the results are consistent with the left expression, i.e., 𝑝(𝛼∨𝛽 = 1|𝑚).
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