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Abstract
Humans excel at interpreting the world dynamically and forming simplifying abstractions. Moreover,
depending on the context, humans can re-interpret one situation in terms of another, which allows
us to assign different meanings to (same) physical objects. With this ability, we can re-use existing
knowledge, understand the behaviors of others, use language with metaphors, and learn and reason
in novel situations. These seem to be prevalent in humans in contrast to other animals or, at least,
current computational systems. Thus, a cognitive-inspired computational framework would need to
consider dynamic interpretation and abstraction as the main design principle. This work presents such
a framework focusing on the problem of dynamic interpretation.
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1. Introduction

Approaches in AI and robotics are often directed toward solving concrete, specialized problems.
For instance, impressive results are achieved in-game playing [1] or robot control [2]. However,
they are not yet applicable to solving general-purpose tasks. On the other hand, many theories
in Cognitive Science offer abstract views on how (general) cognition in humans might work.
Still, their applicability to concrete problems seems troublesome as the subtle low-level details
get lost in abstractions. For similar reasons, many novel cognitive architectures are hybrid, i.e.,
they contain both abstract, symbolic parts suitable for reasoning, and sub-symbolic, good at
handling low-level specific details. However, these processes are functionally separated. That is,
as noted in the recent review of cognitive architectures [3], some use sub-symbolic approaches
for sensory processing while the rest of the representation and reasoning is symbolic. Others
relate symbolically represented modules via sub-symbolic processes (e.g., activation spreading,
reinforcement learning). Overall, it seems natural to introduce abstractions to sub-symbolic
learning, and make them capable of reasoning and learning on an explicit strategic level. Related
to this is a review of abstraction in the area of machine learning [4]. In addition, the author
states that a precondition to general-purpose AI is to automatically construct an appropriate and
problem-specific abstract representation of a new problem, hence reinforcing Brooks [5] belief
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that finding the right abstraction is essential to intelligence. In Cognitive Science, some areas
like Grounded Cognition [6, 7, 8] argue that (abstract) knowledge is grounded in sensory-motor
patterns and simulation theories. As robots face the dichotomy between symbolic reasoning
and sub-symbolic perception and learning, they make ideal candidates for testing such theories.
For example, Billing et al. [9] discuss different ways of realization of simulation theories and
enable a robot to simulate its actions after learning them from demonstrations. Still, a major
question in this area is, How to represent complex and abstract concepts that seems detached
from sensory-motor patterns?

The work presented in this paper makes an effort toward merging abstract (symbolic) and sub-
symbolic approaches in a cognitive process named dynamic interpretation. It brings (abstract)
symbol manipulation in (sub-symbolic) reinforcement learning (RL) and formalizes the notion
of abstraction in a context. Depending on which components of the framework are known, and
which have to be computed, it identifies different computational or cognitive processes. These
processes build on each other, where one of the core processes is interpretation. For example, as
we will see, interpretation allows learning an abstract policy, schema that can be re-used across
domains or simulated in a physical engine. Then, depending on whether an agent is familiar
with a situation (knows how to interpret it) or does not, one can naturally distinguish between
(automatic) associative retrieval, or deliberative reasoning process [10]. The focus of this work
is a deliberative reasoning/learning system implemented as recombination of abstract schemata.
The proposed computational approach is briefly discussed through the view of Cognitive Science
in Section 6. As such it seems to underlay many other cognitive phenomena and brings about a
unified view of different cognitive processes under the same framework. Simulating schemata
in a mental space is believed by some authors to be the thinking process (e.g., [11]). Thus, the
main contribution of this paper is bringing closer together ideas from the field of AI, robotics,
and cognition via a common framework.

2. Representation of Domain, Grounding and Interpretation

The framework used in this paper is based on the previous work [12, 13]. This section briefly
introduces the relevant building blocks of the framework.

2.1. Domain State Matrix

A domain consists of entities such as agents, behaviors and objects. A state of a domain is
described by state variables, each defined by an attribute describing entities or their relations.
An attribute can be a simple feature (sensor value) or a function of other attributes (e.g., ‘at’
is a function of ’position’). For example, the Boolean state variable detected(agent1,object1)
consists of attribute ‘detected’ describing the relation between two domain entities (or a tuple):
∐︀𝑎𝑔𝑒𝑛𝑡1, 𝑜𝑏𝑗𝑒𝑐𝑡1̃︀. Each of the 𝑚 domain elements and their tuples in relation to each other,
are represented as 1 × 𝑛 dimensional row vector, where 𝑛 is the number of available attributes.
Stacking these vectors, we obtain the domain matrix 𝐷𝑚×𝑛, refereed simply as 𝐷. Matrix 𝐷
represents a state at a given time 𝑡. Given a time interval 𝐼 , a tensor 𝐷𝜏 is constructed. It
captures 𝐷(𝑡) for all 𝑡 in interval 𝐼 , hence, representing a bounded trajectory (𝜏, 𝐼). In this
way, a trajectory, (𝜏, 𝐼), is decomposed along three dimensions: entities, attributes and time



Figure 1: Matrices in the framework Figure 2: Illustration of interpretation

(see Figure 1). For example, the state variable detected(agent1,object1), would be placed in
row 𝑖, representing tuple ∐︀agent1,object1̃︀; and in column 𝑗, representing attribute detected;
while the third index 𝑡 will reflect the value of the variable in time 𝑡 ∈ 𝐼 . We assume discrete
space and time.

2.2. Abstract Context

Context is an abstraction of a concrete situation that may arise in various physical domains
in which robots operate. It may help to select and attend to relevant parts of a situation. In
addition, context provides meaning to robotic actions, rendering them intentional, goal-oriented
behavior. In the framework, abstraction is defined as a context, 𝒞. It contains a set of rules or
relations, relating relevant high-level categories, named contextual entities. Such entities are
categories such as roles, actions, and artifacts (objects with special meaning in the context). For
instance, in a context of a buying/selling scenario, a rule may state that a buyer should pay
at a place dedicated to paying: at ((Buyer,Pays,PayingPlace)), where Buyer is a contextual
entity, i.e., a category for agents that fits into certain behavior. Similarly, Paying is a category
for behaviors associated with money transfer/exchange from one agent to another. Similarly,
PayingPlace is a category for a particular position where paying takes place, e.g., the place of a
cash-register or a seller.

2.3. Grounding And Semantics

Rules or relations like ‘at’ are understandable by humans as we already know its meaning.
However, such relations are without explicit connection to the concrete physical meaning, hence
they are too abstract for robots. To make them concrete, we link them to a physical domain
through grounding and rules semantics.

Grounding. The grounding, 𝒢𝒮 , is defined as a function that associates contextual entities
in 𝒞 with concrete entities in a domain 𝒟. Then, for example, an execution of passing a piece



of paper in a physical domain may be associated with contextual entities such as ‘paying’ and
‘money’ if it adheres to contextual constraints, that is, its relations. We represent grounding as a
binary matrix 𝐺𝒮 that captures such associations. Each entry in 𝑔𝑖,𝑗 , has a value 1 if high-level
contextual entity (or their tuples) in a row 𝑖, is grounded to a (low-level) domain entity (or their
tuples) in column 𝑗.

Semantics. Rules are defined as relations between contextual entities (e.g.,
at ((Buyer,Pays,PayingPlace))), and in this abstract form, while specify syntax, they
do not say much about concrete meaning on the level of an execution. Therefore rule’s
semantics is defined through a function ⎜⋅⨆︁ that maps rules to trajectories. Then, for example, a
rule at ((Buyer,Pays,PayingPlace)) has semantics that specifies that a ‘position’ of a 𝐵𝑢𝑦𝑒𝑟,
when executing 𝑃𝑎𝑦𝑚𝑒𝑛𝑡, should be the same as the ‘position’ of 𝑃𝑎𝑦𝑖𝑛𝑔𝑃 𝑙𝑎𝑐𝑒.

J at ((𝐵𝑢𝑦𝑒𝑟,𝑃𝑎𝑦𝑠,𝑃𝑎𝑦𝑖𝑛𝑔𝑃 𝑙𝑎𝑐𝑒))K ≡
{(𝐼, 𝜏) ⋃︀ ∀𝑡 ∈ 𝐼, active(𝑃𝑎𝑦𝑠,𝐵𝑢𝑦𝑒𝑟)(𝜏(𝑡)) = ⊺ Ô⇒

position(𝐵𝑢𝑦𝑒𝑟)(𝜏(𝑡)) = position(𝑃𝑎𝑦𝑖𝑛𝑔𝑃 𝑙𝑎𝑐𝑒)(𝜏(𝑡))}.

Given a context 𝒞, we denote by 𝒮𝒞 the set of all rule semantics for the rules in 𝒞. Note that
semantics is a function of grounding, hence concrete state-values can be obtained only after
grounding. The context of an execution is therefore established by rules and the pair ∐︀𝒮𝒞 ,𝒢𝒮̃︀.
Semantics and grounding together allow concretization of abstract rules on a level of physical
execution (trajectories). The expressiveness of rules depends on two factors, namely, on the
complexity of relations in norm semantics, and the number of available attributes.

Having the semantics we define a binary semantic indicator matrix 𝑆, whose rows correspond
to all available attributes, and columns only to attributes used in the semantic functions (context-
relevant attributes): entry 𝑠𝑖,𝑗 has value 1 if attributes in the column 𝑗 and the row 𝑖 are identical,
and 0 otherwise.

2.4. Interpretation Relation

Domain states, semantic indicators and grounding are all represented in a vector space via
related matrices, 𝐷, 𝑆, and 𝐺𝒮 . What is still missing is matrix representations of a context, that
is, the state of abstract contextual entities, like Buyer or Paying. This intuition is captured by
the following relation:

𝐺𝒮𝐷𝑆 = 𝑇𝒮 (1)

Matrix 𝑇𝒮 describes the state of context 𝒞, and it can be understood as follows. The product
between 𝐺𝒮 and 𝐷 selects domain entities (rows in 𝐷) that are grounded, which become row
vectors in 𝑇𝒮 as corresponding contextual entities. The product between 𝐷 and 𝑆 selects only
attributes (columns in 𝐷) that are relevant for the context 𝒞, that is, attributes used in semantics
functions in 𝒮𝒞 . In this way, 𝑇𝒮 captures a state of context-relevant attributes of contextual
entities, at time 𝑡, that is, it captures the state of a context (see Figure 2). Note also that values
in 𝑇𝒮 are selections of rows and columns already existing in 𝐷, hence another way to see this
equality is as an selective attention mechanism, where the knowledge about context allows



Table 1
Relevant computation/cognitive problems.

Problems Context Grounding Trajectory Domain Semantics
Verification Given Given Given Given Given
Grounding Given ? − Given −

Interpretation Given ? Given Given Given
Abstract
Learning/Planning

Given Given ? Given Given

General
Reasoning/Learning

? ? ? Given −

us to attend to the context-relevant part of 𝐷. In a similar way, the context-relevant part of a
whole trajectory is represented as a tensor.

3. Computational (Cognitive) Problems

The goal of this section is to systematically classify problems relevant for this work and discuss
their solutions. They are arranged in Table 1, where columns represent components in our
framework, while rows specify problems depending on which component is given, irrelevant
(marked with a dash) and which has to be computed (marked with a question-mark).

3.1. Verification, Grounding and Interpretation Problems

Verification. Since all components are known, this problem is to ensure that the given
trajectory adheres to the given set of context’s rules (or constraints), that is, it complies to all
rules provided by 𝒮𝒞 .

Grounding Problem. This is a ‘simple’ symbol grounding problem that does not take rules
semantics into account, nor a trajectory. It could be addressed with associative or similarity
based approaches for categorization as it does not require verification (see Section 6.1).

Interpretation Problem. This is another form of a grounding problem when the trajectory
and semantics functions are known, hence have to be taken into consideration. For example,
given an improvised football game, what is a role of a sweater on a meadow? Any grounding
𝐺𝒮 for which a trajectory (𝜏, 𝐼) adheres (can be verified) to semantics functions 𝒮𝒞 is a solution
to this problem, hence it has multiple solutions.

3.2. Abstract Learning and Reasoning Problems

Abstract Learning. This problem is concerned with generating a trajectory adherent to 𝒮𝒞 .
The problem can be seen as a planning problem, or as an abstract learning problem. The latter
is concerned with learning a policy based on abstract (lifted) representation, that can generate
concrete trajectories adherent to semantics specifications (for details please refer to Tomic
et al [13]). As the dimensions of matrix 𝑇𝒮 depend only on semantics 𝒮𝒞 , we use the tuple



∐︀𝒮𝒞 , 𝑇𝒮̃︀ to learn such a policy. We use 𝑇𝒮 to obtain a feature-state vector (input), and 𝒮𝒞 to
check adherence to rules, and depending on it, generate a feedback (reward) signal. The abstract
policy acts towards achieving (declarative) semantics 𝒮𝒞 , with domain entities specified in
grounding 𝒢𝒮 , and we denote it by 𝜋𝒮(𝐴𝑐𝑡𝑠 ⋃︀ 𝑇𝒮), where 𝐴𝑐𝑡𝑠 are abstract (contextual) actions
that can be grounded to concrete ones. An abstract policy can be seen as schema (see Section 6.3)
(e.g. 𝑎𝑡(𝑎𝑔𝑒𝑛𝑡, 𝑝𝑙𝑎𝑐𝑒) - a schema whose execution should result in moving grounded 𝑎𝑔𝑒𝑛𝑡 to
be 𝑎𝑡 a grounded 𝑝𝑙𝑎𝑐𝑒).

General Reasoning/Learning Problem. This is the most general problem defined in the ta-
ble. The problem assumes only the knowledge of parts of a domain 𝐷. In reinforcement learning,
this problem typically assumes the presence of a final goal or a reward. Some authors argue that
the generic objective of maximizing rewards is enough for learning general behaviors [14]. Still,
the process of learning can benefit from learning the underlying structure of a task (context) in
which rewards are obtained. Thus, in our approach to this problem, a novel (abstract) schema
is learned (in a context of a goal) from local interactions of existing behaviors/schemata. We
address this problem by dynamically interpreting schemata and recombining them towards
learning a novel abstract policy that generates trajectories that achieve a given grounded goal
(goal-adherent trajectories).

3.3. More About Interpretation Problem

The interpretation problem based only on verification from rules semantics has multiple solu-
tions (see Section 3.1). As semantics functions describe a certain (temporal) pattern of values
of attributes, the same patterns may occur in arbitrary entities/attributes that typically should
not be related to a context. The question of correctness (verification) is related to the central
question in the philosophy of computer science [15]: What does it mean for a physical machine
to satisfy an abstract requirement. It is known that abstracting by simple mappings, comparable
to our grounding, leads to pancomputationalism, a view where “every ordinary open system
realizes every abstract finite automaton” [16, 17]. Different arguments to counter this view
are suggested. They usually consist of adding requirements to further restrict possible inter-
pretations, e.g., causal constraints or that a computational system must be associated with a
semantic description. Maybe a view that is the most relevant to this work is the assumption that
computation depends on interpretation (discussed in [18, 19]). When physical interactions are
causal, consistent, and reproducible, then an observer (or interpreter) can easily (directly) map
(ground) an abstract machine to a physical process or vice versa. Hence, whether a physical
system implements a computation depends on how an observer interprets (maps) the system. An
interpreter would already have to possess prior knowledge of the patterns it wants to recognize
to verify their correctness. Hence the computational part would be already in the interpreter,
which begs the question, How did that initial pattern emerge? The answer might lie in an
interpreter’s goals 1. Provided a concrete goal the interpretation problem would be constrained
by causal inference provided by a physical/simulation system since only causal sequences of
actions would consistently lead to a goal state. An example that further demonstrate that

1The initial goal of an agent’s self-preservation, naturally arise in the process of evolution.



interpretation depends on goal is as follows. When the goal is to keep a fire burning, we can
interpret a newspaper as fuel (since it has a ‘flammable’ attribute), regardless of its typical use as
an information artifact. Searching or learning interpretation (dynamic interpretation) towards
achieving a concrete goal is the main topic in this work.

4. Dynamic Interpretation

This section introduces the dynamic interpretation of schemata and their simulation in which
their interpretation depends on a given goal.

4.1. Schema Interpretation

In an abstract policy, semantics 𝒮𝒞 define what kind of behavioral pattern is learned, while
𝒢𝒞 defines involved domain entities. Then, an interpretation of an abstract policy (schema) is
defined by a tuple ∐︀𝜋𝒮 ,𝒢𝒮̃︀. For example, an interpretation of abstract policy ∐︀𝜋⎜𝑎𝑡⨆︁,𝒢1⎜𝑎𝑡⨆︁̃︀, that
acts toward achieving ‘at’ relation between, e.g., agent1 and object1 for 𝒢1⎜𝑎𝑡⨆︁, when interpreted
with 𝒢2⎜𝑎𝑡⨆︁, with agent1 and object2, would act toward achieving the same ‘at’ relation but
with new object2. Thus, with different schema interpretations, an agent can achieve different
concrete behaviors. This feature is used for learning interpretation and a sequence of abstract
schemata so that a given goal is achieved.

4.2. Learning via Dynamic Interpretation/Grounding

Working Example. Imagine a robotic agent named Robby. He is soon to run out of battery
power, hence his main goal is to obtain a pack of batteries located at a hardware store (see
Figure 3). He does not know what ‘store’ is, nor which are the actions (or sequences) to
obtain/buy an item like a battery. All that Robby knows is his grounded goal, how to verify it,
and a set of low-level schemata in his procedural memory (e.g., 𝜋⎜𝑎𝑡⨆︁) that he can interpret and
simulate in his mental space – a physical engine.

4.2.1. Approach

In this approach, a goal is realized similarly to rules semantics (constraints or conditions
over trajectories). For instance, it can specify that has(Buyer, Item) = true, where Buyer and
Items are grounded, e.g., 𝐺(𝐵𝑢𝑦𝑒𝑟) = 𝑅𝑜𝑏𝑏𝑦, 𝐺(𝐼𝑡𝑒𝑚) = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦. In this way, the existing
verification and feedback (reward) mechanism are used [13]. Given a grounded goal, an agent
learns a sequence of schemata interpretations, that is, choices of ∐︀𝜋𝒮 ,𝒢𝒮̃︀ in 𝐼 . Thus we can see
how by choosing schemata and their interpretations (groundings) in different time intervals,
we can create a higher level policy:

𝜋𝒮𝜆+1(∐︀𝜋𝒮𝜆 ,𝒢𝒮𝜆̃︀ ⋃︀ 𝑇𝑆𝜆
),

where 𝜆 in 𝒮𝜆 indicate the level of semantical abstraction.
𝜋𝒮𝜆+1 is a policy that recombines (lower-level) schemata, however, note that it is not abstract.

The groundings are learned for a specific task, and one does not have 𝐺𝒮𝜆+1 or 𝑆𝜆+1 needed



Figure 3: A sequence of interpretations of schemata leads to a goal-adherent trajectory.

for interpreting learned policy. To be abstract, its has to have a stable interpretable structure
describing the overall context of a high level task, 𝑇𝒮𝜆+1. Moreover, the size of input (feature)
vector for 𝜋𝜆+1 changes with different interpretations for each abstract policy which may have
different dimensions (𝑇𝒮 ) for each low-level policy 𝜋𝜆.

Making High-Level Policy Abstract. Still, this kind of learning explores the space of
groundings (interpretations) to find exactly those groundings that solve the problem. As
the higher-level policy, 𝜋𝜆+1, uses only domain entities ground by each instantiation of lower-
level policies, this means that the unified set of these groundings is 𝒢𝒮𝜆+1 . The matrix form
𝐺𝒮𝜆+1 can be obtained directly by taking each learned 𝐺𝒮𝜆 and concatenating all unique rows
vertically into overall G𝜆+1. Similarly, as the approach learns exact low-level abstract policies,
for which we know their 𝑆𝜆, we then know all context-relevant attributes in the higher-level
policy also. To create 𝑆𝜆+1, then, it is enough to concatenate all unique columns horizontally
from used lower-level policies 𝑆’s). After these steps one would have G𝜆+1 and S𝜆+1, which
can be applied to domains via equation (1), hence obtaining TS𝜆+1 and providing the stable
input vector for abstract policy 𝜋𝒮𝜆+1 that can be re-learned as abstract policy (interpratable
schema).

In summary, the dynamic interpretation is a goal-driven approach that takes primitives or
policies on level 𝜆 and creates representation and abstract policies on level 𝜆 + 1.

5. The Pilot Experiment

The goal of the presented experiment is to empirically prove the feasibility of the proposed
approach. It focuses on learning interpretation and selection of schemata depending on a
goal, as described in the previous section. The hypothesis is that learning algorithms will
need fewer learning steps to learn to achieve a goal, since learning does not start from scratch,
rather, it uses already abstracted previously learned policies (schemata) that execute in longer
temporal intervals. The experiment is confined to learning a sequence of interpretations of



Figure 4: Learning Environment. Figure 5: Results.

only one schema. This is done for simplicity, but also to stress the fact that by simply re-using
(transferring) the same abstract schema, an agent can learn more complex behavior. The video
of this pilot experiment is available at https://youtu.be/0C1YZ7Av2Eo.

Scenario. The scenario is the same as the working example in the previous section 4.2 (see
Figure 4). The Robby’s goal is specified as: has(buyer, item) = true, executed(buyer,pay) = true,
executed(buyer, exit) = true, and grounded as follows: 𝒢(buyer) = Robby, 𝒢(item) = battery,
𝒢(pay) = wtransfer, and 𝒢(exit) = open. Robby has only one pre-trained abstract policy
𝜋⎜𝑒𝑥𝑒𝑐𝑢𝑡𝑒_𝑎𝑡⨆︁, which will make an agent navigate at grounded location and execute grounded
action. Thus an RL algorithm has to find/learn a sequence of interpretations 𝒢’s of one schema.

Hardware ans Software Setup. The simulations are executed on a desktop computer – Intel
Core i7 4790K CPU @ 4GHz (x64), 16GB DDR3 RAM, Nvidia GTX970 (4GB GDDR5). Simulations
are done in a game engine [20]. Reinforcement learning is done with PPO [21] (an artificial
neural network based approach), with the help of the Machine Learning toolkit [22] (v0.6).

Trials. The simulation used a maximum of 2000 steps per learning episode, where the data is
collected over 16 parallel simulations. Since abstract policies (schemata) are temporally extended
actions, they need a certain time interval to execute. Thus instead of requesting the output of
the RL algorithm at each simulation step, we get its output, groundings, every 200 simulation
steps.

Results. Results are shown in Figure 5. It contains learning curves for models consisting of
32, 64, 128, and two layers of 128 neurons. Results are promising as they suggest that learning is
one order of magnitude faster than learning the same behavior from scratch [13], which in most
cases did not converge in 4M simulation steps. That confirms our hypothesis and, importantly,
shows the feasibility of the dynamic interpretation approach.

6. Brief Connections to Cognitive Science

One of the fundamental questions in Cognitive Science is, How do humans organize and
represent knowledge? The classical views on categorization assume a precise, rigid definition of

https://youtu.be/0C1YZ7Av2Eo


a category as a set of necessary and sufficient features or attributes. This view has drawbacks, as
humans often categorize based on typicality. For instance, a pigeon or robin seems more typical
within the category of birds than an ostrich or a penguin. Cognitive science offers additional
views on categorization and concepts representation. Roughly, views can be divided into, ones
that categorize based on similarity comparison, and others based on rules-based representations.

6.1. Similarity Based Views

Popular categorization theories are based on similarity that measure how close a certain stimulus
matches a category. Most popular are Prototype [23] and Exemplar [24] theories. The prototype
theory suggests that a stimulus is compared with an ideal or prototypical example of a category.
A prototype is a summary representation of a category, its central tendency of a category or an
ideal example. Whether an entity (or experience) belongs to a category depends on how close it
is to a category’s prototype. The difficulty with finding an ideal/common prototype arises when
category members have high variability in features. The exemplar view works by comparing
the stimuli with a set of examples of previous instances (members of categories) stored in a
memory. The stimuli are then classified based on the maximum number of matches it has with
known members of a particular category. A ‘heterogeneous hypothesis’ [25] assumes that both
views are used to form or classify a concept, and both approaches are implemented in cognitive
architecture (Dual PECCS) [25], using conceptual spaces representation [26] where each quality
of an object (attribute) is represented on a separate dimension. An entity is then represented as
a point in multi-dimensional space where the distance between points is a similarity measure,
hence providing a tool for computational realizations of similarity-based categorization. Other
similarity-based approaches include unsupervised clustering and feed-forward artificial neural
networks (e.g. classifiers). Classifiers are often based on convolution neural network architecture,
and, to some extent, can also include temporal dimension (e.g, [27, 28]). In classifiers hidden
layers are seen as a conceptual system [29].

Conceptual spaces are comparable to our representation of a domain state matrix (see Sec-
tion 2.1). Similarity-based approaches could be used for associative retrieval to select candidate
groundings and guide reasoning (dynamic interpretation). Still, categorization based on similar-
ities does not include verification and to an extent, corresponds to a grounding problem defined
in Table 1.

6.2. Theoretic-based View

Usually similarity-based approaches ignore the role of reasoning, goals, or context of an inter-
preter. Prinz [11], among others, states that much more knowledge is contained in concepts
than prototype and exemplar theories had recognized [11]. This gives rise to a theoretic-based
view on concepts [30]. In this view humans concepts are “mini theories of the categories they
represent” [11]. Theoretic-based view does not look at categorization in isolation, rather they
assume rules and relations between other categories in an overall structure. “To understand the
concept of shoes, we need to understand the concept of legs and walking” [31]. Recently the
‘heterogeneous hypothesis’ is extended [32], providing an algorithm that decides when to use
an exemplary, prototype, or theoretically based approach.



The role of theories is recognized in the presented computational framework. For example, a
concept ‘store’ is defined over other categories mutually related with a set of rules (theories).
Hence, a category of goods (merchandise) is hard to understand without dynamical (temporal)
relations to categories of buyers, sellers, etc. In the framework, theories are represented as
a context with grounded (declarative) semantics, ∐︀𝒮𝒞 ,𝒢𝒮̃︀, and the problem of categorization
corresponds to grounding and interpretation problems/processes (see Section 3.1). An interesting
question is, How can theories be represented in a sub-symbolic system (without declarative
semantics 𝒮𝒞)? The answer might lie in schematic (procedural) mental simulation.

6.3. Schema

The term ‘schema’ was initially introduced in psychology by Bartlett [33]. Their work proposes
that human knowledge is stored in underlying mental structures that represent a generic
knowledge about the world. Since then, other terms are used to describe schema, such as: ‘frame’,
or ‘script’. Schema is described as a pattern of behaviors that organize categories of information
and relationships between them. Schemata are the foundation of numerous theories regarding
modeling human cognition, concepts formation, language development and comprehension,
culture, theories of mind, etc. Alba and Hasher [34] describe four important processes relevant
to schemata: (1) choosing incoming stimuli, which can guide attention and focus only on relevant
stimuli; (2) abstraction, which stores relevant patterns of interactions without the details and its
original content; (3) interpretation of the new information by association to previously-stored
knowledge; and (4) integration of those processes into a memory.

It can be argued that we have made a step towards achieving these processes in the pre-
sented computational framework, thus creating a schematic knowledge representation, ∐︀𝜋𝒮 ,𝒢𝒮̃︀.
Choosing incoming stimuli is done via interpretation or grounding, 𝒢𝒮 . The knowledge stored
in abstract policies 𝜋𝒮 does not contain information about a particular domain, rather it stores
information regarding patterns that relate to attributes of abstract categories. As such, it can
be used to interpret information about new domain entities depending on previously-stored
relations, by fitting them into corresponding categories. The presented framework is primarily
used for social level interactions (social schemata), hence it is focused on representing normative
rules [12]. The knowledge about other properties of the world is represented with other types
of schemata. Some examples are self-schema, that is, knowledge about oneself based on past
and grounded in present experiences; object-schema, knowledge about different categories of
objects (entities), their function, structure; body schema, sensory-motor information of postures,
etc. Importantly, they can still be seen as a relation between categories, hence interpretable and
computable as is the case in the presented framework. Schemata are not static, they can change
in time, and be simulated. Simulation is one of the main ideas behind the area of grounded
cognition.

6.4. Grounded Cognition and Mental Simulations

The view in Grounded Cognition [35] states that conceptual representation is grounded in
sensory-motor systems. As a category is learned from its member examples, only salient
patterns of activation of sensory-motor (or introspective) features are stored in a memory.



Since stimuli can be a combination of different sensory inputs, this establishes a multi-modal
representation of a category, called ‘perceptual symbol’. Depending on different factors (selective
attention, existing knowledge, etc.), they can be retrieved (in working memory) and act as
simulators by re-activating patterns of a similar set of features, a subset of those that were active
during learning. Such process reenact experiences (causing mental imaginary), the process
known as mental simulation. In this view a concept is not static, rather it is seen as a dynamic
interpretation [36], or a ‘skill’ to construct representation depending on the constraints of a
situation [7]. The construction of more complex concepts is done by recombining existing
ones in mental simulation. As described by Prinz [11] the perceptual symbols stand as proxies
for the category they represent, hence they are often called proxytypes. It is not clear what
proxytypes exactly are (e.g., multi-modal representations, visual models, etc.). Still, it is known
that a context determines which proxytypes are retrieved in working memory.

Views in this area seem to closely correspond to the presented approach of dynamic interpre-
tation and recombination of schemata as a way to dynamically construct novel (action) schema.
Interestingly, grounded cognition is often seen as a core to other cognitive phenomena. Some
additional discussions are provided in Tomic et al. [37].

7. Conclusion

This work proposes a dynamic interpretation process that bridges the gap between high-level
symbolic manipulation and low-level, sub-symbolic learning by searching in the space of
groundings/interpretations and schemata. Interestingly, while the ideas on grounding, mental
simulation and recombination come from cognitive science, we have reached complementary
conclusions by investigating dynamic interpretation of abstract policies. This intersection of
different paths toward complementary conclusions stresses the unifying role of interpretation
and abstraction, and brings ideas in AI, robotics, and cognitive theories closer together in the
pursuit of human-style intelligence.
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